Lax Matrices for Yang-Baxter Maps

نویسندگان

  • Yuri B SURIS
  • Alexander P VESELOV
  • P Veselov
چکیده

It is shown that for a certain class of Yang-Baxter maps (or set-theoretical solutions to the quantum Yang-Baxter equation) the Lax representation can be derived straight from the map itself. A similar phenomenon for 3D consistent equations on quadgraphs has been recently discovered by A. Bobenko and one of the authors, and by F. Nijhoff.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. Q A ] 9 A pr 2 00 3 LAX MATRICES FOR YANG - BAXTER MAPS

It is shown that for a certain class of Yang-Baxter maps (or set-theoretical solutions to the quantum Yang-Baxter equation) the Lax representation can be derived straight from the map itself. A similar phenomenon for 3D consistent equations on quadgraphs has been recently discovered by A. Bobenko and one of the authors, and by F. Nijhoff. Introduction. In 1990 V.G. Drinfeld suggested the proble...

متن کامل

2 3 Fe b 20 16 Grassmann extensions of Yang - Baxter maps

In this paper we show that there are explicit Yang-Baxter maps with Darboux-Lax representation between Grassmann extensions of algebraic varieties. Motivated by some recent results on noncommutative extensions of Darboux transformations, we first derive a Darboux matrix associated with the Grassmann-extended derivative Nonlinear Schrödinger (DNLS) equation, and then we deduce novel endomorphism...

متن کامل

Yang-Baxter maps and integrable dynamics

The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and/or transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is discussed in the context of the integrability problem for the corresponding dynamical s...

متن کامل

ar X iv : m at h / 02 05 33 5 v 1 [ m at h . Q A ] 3 1 M ay 2 00 2 Yang - Baxter maps and integrable dynamics

The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is described. Some examples of birational Yang-Baxter maps appeared in the KdV theory are dis...

متن کامل

5 J ul 2 00 2 Yang - Baxter maps and integrable dynamics February 1 , 2008

The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and/or transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is discussed in the context of the integrability problem for the corresponding dynamical s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003